On reduced Beltrami equations and linear families of quasiregular mappings
نویسندگان
چکیده
منابع مشابه
Bloch radius, normal families and quasiregular mappings
Bloch’s Theorem is extended to K-quasiregular maps R → S, where S is the standard n-dimensional sphere. An example shows that Bloch’s constant actually depends on K for n ≥ 3. Let B(a, r) := {x ∈ R : |x − a| < r} be an open ball, 0 < r ≤ ∞. Consider an open discrete map f : B(0, r)→ M where M is a Riemannian manifold of dimension n. For every x ∈ B(0, r) we define df (x) as the radius of the ma...
متن کاملLinear boundary values of weakly quasiregular mappings
We use a new construction in the spirit of Gromov’s convex integration to prove a rather surprising result that every affine map is the boundary value of a weakly quasiregular map in any Sobolev space with index p < n/2. Our method is based on constructing special Cauchy sequences by convex integration for certain vectorial Hamilton–Jacobi equations. 2000 Académie des sciences/Éditions scient...
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولOn Injectivity of Quasiregular Mappings
We give sufficient conditions for a planar quasiregular mapping to be injective in terms of the range of the differential matrix.
متن کاملSingularities of quasiregular mappings on Carnot groups
In 1970 Poletskĭı applied the method of the module of a family of curves to describe behavior of quasiregular mappings (in another terminology mappings with bounded distortion) in Rn. In the present paper we generalize a result by Poletskĭı and study a singular set of a quasiregular mapping using the method of the module of a families of curves on Carnot groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: crll
سال: 2012
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crelle-2012-0041